#!/usr/bin/env python3 import requests import datetime import argparse import sys import logging from zoneinfo import ZoneInfo from dateutil import parser as date_parser # pyright: ignore[reportMissingModuleSource] # Setup logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # --- CONFIGURAZIONE METEO --- HOME_LAT = 43.9356 HOME_LON = 12.4296 HOME_NAME = "🏠 Casa (Wide View ±12km)" TZ = "Europe/Rome" TZINFO = ZoneInfo(TZ) # Offset ~12-15km OFFSET_LAT = 0.12 OFFSET_LON = 0.16 OPEN_METEO_URL = "https://api.open-meteo.com/v1/forecast" GEOCODING_URL = "https://geocoding-api.open-meteo.com/v1/search" HTTP_HEADERS = {"User-Agent": "loogle-bot-v10.4"} def now_local() -> datetime.datetime: return datetime.datetime.now(TZINFO) def parse_time(t: str) -> datetime.datetime: try: dt = date_parser.isoparse(t) if dt.tzinfo is None: return dt.replace(tzinfo=TZINFO) return dt.astimezone(TZINFO) except Exception as e: logger.error(f"Time parse error: {e}") return now_local() def degrees_to_cardinal(d: int) -> str: dirs = ["N", "NE", "E", "SE", "S", "SW", "W", "NW"] try: return dirs[round(d / 45) % 8] except: return "N" def get_icon_set(prec, snow, code, is_day, cloud, vis, temp, rain, gust, cape, cloud_type): sky = "☁️" try: if cloud_type == 'F': sky = "🌫️" elif code in (95, 96, 99): sky = "⛈️" if prec > 0 else "🌩️" elif prec >= 0.1: sky = "🌨️" if snow > 0 else "🌧️" else: # LOGICA PERCEZIONE UMANA if cloud_type == 'H': if cloud <= 40: sky = "☀️" if is_day else "🌙" elif cloud <= 80: sky = "🌤️" if is_day else "🌙" else: sky = "🌥️" else: if cloud <= 15: sky = "☀️" if is_day else "🌙" elif cloud <= 35: sky = "🌤️" if is_day else "🌙" elif cloud <= 60: sky = "⛅️" elif cloud <= 85: sky = "🌥️" else: sky = "☁️" sgx = "-" if snow > 0 or (code is not None and code in (71,73,75,77,85,86)): sgx = "☃️" elif temp < 0 or (code is not None and code in (66,67)): sgx = "🧊" elif cape > 2000: sgx = "🌪️" elif cape > 1000: sgx = "⚡" elif temp > 35: sgx = "🥵" elif rain > 4: sgx = "☔️" elif gust > 50: sgx = "💨" return sky, sgx except Exception as e: logger.error(f"Icon error: {e}") return "❓", "-" def get_coordinates(city_name: str): params = {"name": city_name, "count": 1, "language": "it", "format": "json"} try: r = requests.get(GEOCODING_URL, params=params, headers=HTTP_HEADERS, timeout=10) data = r.json() if "results" in data and data["results"]: res = data["results"][0] cc = res.get("country_code", "IT").upper() name = f"{res.get('name')} ({cc})" return res["latitude"], res["longitude"], name, cc except Exception as e: logger.error(f"Geocoding error: {e}") return None def choose_best_model(lat, lon, cc): if cc == 'JP': return "jma_msm", "JMA MSM" if cc in ['NO', 'SE', 'FI', 'DK', 'IS']: return "metno_nordic", "Yr.no" if cc in ['GB', 'IE']: return "ukmo_global", "UK MetOffice" if cc == 'IT' or cc == 'SM': return "meteofrance_arome_france_hd", "AROME HD" if cc in ['DE', 'AT', 'CH', 'LI', 'FR']: return "icon_d2", "ICON-D2" return "gfs_global", "NOAA GFS" def get_forecast(lat, lon, model): lats = [lat, lat + OFFSET_LAT, lat - OFFSET_LAT, lat, lat] lons = [lon, lon, lon, lon + OFFSET_LON, lon - OFFSET_LON] lat_str = ",".join(map(str, lats)) lon_str = ",".join(map(str, lons)) params = { "latitude": lat_str, "longitude": lon_str, "timezone": TZ, "forecast_days": 3, "models": model, "wind_speed_unit": "kmh", "precipitation_unit": "mm", "hourly": "temperature_2m,apparent_temperature,relative_humidity_2m,cloud_cover,cloud_cover_low,cloud_cover_mid,cloud_cover_high,windspeed_10m,winddirection_10m,windgusts_10m,precipitation,rain,snowfall,weathercode,is_day,cape,visibility,uv_index" } try: r = requests.get(OPEN_METEO_URL, params=params, headers=HTTP_HEADERS, timeout=25) if r.status_code != 200: logger.error(f"API Error {r.status_code}: {r.text}") return None return r.json() except Exception as e: logger.error(f"Request error: {e}") return None def safe_get_list(hourly_data, key, length, default=None): if key in hourly_data and hourly_data[key] is not None: return hourly_data[key] return [default] * length def get_val(val, default=0.0): if val is None: return default return float(val) def generate_weather_report(lat, lon, location_name, debug_mode=False, cc="IT") -> str: model_id, model_name = choose_best_model(lat, lon, cc) data_list = get_forecast(lat, lon, model_id) if not data_list: return f"❌ Errore API Meteo ({model_name})." if not isinstance(data_list, list): data_list = [data_list] data_center = data_list[0] hourly_c = data_center.get("hourly", {}) times = hourly_c.get("time", []) if not times: return "❌ Dati orari mancanti." L = len(times) # --- DATI LOCALI (CASA) --- l_temp = safe_get_list(hourly_c, "temperature_2m", L, 0) l_app = safe_get_list(hourly_c, "apparent_temperature", L, 0) l_rh = safe_get_list(hourly_c, "relative_humidity_2m", L, 50) l_prec = safe_get_list(hourly_c, "precipitation", L, 0) l_rain = safe_get_list(hourly_c, "rain", L, 0) l_snow = safe_get_list(hourly_c, "snowfall", L, 0) l_wspd = safe_get_list(hourly_c, "windspeed_10m", L, 0) l_gust = safe_get_list(hourly_c, "windgusts_10m", L, 0) l_wdir = safe_get_list(hourly_c, "winddirection_10m", L, 0) l_code = safe_get_list(hourly_c, "weathercode", L, 0) l_day = safe_get_list(hourly_c, "is_day", L, 1) l_cape = safe_get_list(hourly_c, "cape", L, 0) l_vis = safe_get_list(hourly_c, "visibility", L, 10000) l_uv = safe_get_list(hourly_c, "uv_index", L, 0) # Estraggo anche i dati nuvole LOCALI per il tipo l_cl_low_loc = safe_get_list(hourly_c, "cloud_cover_low", L, 0) l_cl_mid_loc = safe_get_list(hourly_c, "cloud_cover_mid", L, 0) l_cl_hig_loc = safe_get_list(hourly_c, "cloud_cover_high", L, 0) # --- DATI GLOBALI (MEDIA) --- acc_cl_tot = [0.0] * L points_cl_tot = [ [] for _ in range(L) ] p_names = ["Casa", "Nord", "Sud", "Est", "Ovest"] for d in data_list: h = d.get("hourly", {}) for i in range(L): cc = get_val(safe_get_list(h, "cloud_cover", L)[i]) cl = get_val(safe_get_list(h, "cloud_cover_low", L)[i]) cm = get_val(safe_get_list(h, "cloud_cover_mid", L)[i]) ch = get_val(safe_get_list(h, "cloud_cover_high", L)[i]) real_point_total = max(cc, cl, cm, ch) acc_cl_tot[i] += real_point_total points_cl_tot[i].append(real_point_total) num_points = len(data_list) avg_cl_tot = [x / num_points for x in acc_cl_tot] if debug_mode: output = f"🔍 **DEBUG 5 PUNTI (V10.4)**\n" now_h = now_local().replace(minute=0, second=0, microsecond=0) idx = 0 for i, t_str in enumerate(times): if parse_time(t_str) >= now_h: idx = i break # Valori Locali loc_L = get_val(l_cl_low_loc[idx]) loc_H = get_val(l_cl_hig_loc[idx]) output += f"Ora: {parse_time(times[idx]).strftime('%H:%M')}\n" output += f"📍 **LOCALE (Casa)**: L:{int(loc_L)}% | M:{int(get_val(l_cl_mid_loc[idx]))}% | H:{int(loc_H)}%\n" output += f"🌍 **MEDIA GLOBALE**: {int(avg_cl_tot[idx])}%\n" decision = "H" if loc_L > 40: decision = "L (Priorità Locale)" output += f"👉 **Decisione**: {decision}\n" return output now = now_local().replace(minute=0, second=0, microsecond=0) blocks = [] header = f"{'LT':<2} {'T°':>4} {'h%':>3} {'mm':>3} {'Vento':<5} {'Nv%':>5} {'Sk':<2} {'Sx':<2}" separator = "-" * 31 for (label, hours_duration, step) in [("Prime 24h", 24, 1), ("Successive 24h", 24, 2)]: end_time = now + datetime.timedelta(hours=hours_duration) lines = [header, separator] count = 0 for i, t_str in enumerate(times): try: dt = parse_time(t_str) if dt < now or dt >= end_time: continue if dt.hour % step != 0: continue T = get_val(l_temp[i], 0) App = get_val(l_app[i], 0) Rh = int(get_val(l_rh[i], 50)) t_suffix = "" diff = App - T if diff <= -2.5: t_suffix = "W" elif diff >= 2.5: t_suffix = "H" t_s = f"{int(round(T))}{t_suffix}" Pr = get_val(l_prec[i], 0) Sn = get_val(l_snow[i], 0) Code = int(l_code[i]) if l_code[i] is not None else 0 p_suffix = "" if Code in [96, 99]: p_suffix = "G" elif Code in [66, 67]: p_suffix = "Z" elif Sn > 0 or Code in [71, 73, 75, 77, 85, 86]: p_suffix = "N" p_s = "--" if Pr < 0.2 else f"{int(round(Pr))}{p_suffix}" # --- CLOUD LOGIC (V10.4: LOCAL PRIORITY) --- # Usiamo la MEDIA per la quantità (Panoramica) c_avg_tot = int(avg_cl_tot[i]) # Usiamo i dati LOCALI per il tipo (Cosa ho sulla testa) loc_L = get_val(l_cl_low_loc[i]) loc_M = get_val(l_cl_mid_loc[i]) loc_H = get_val(l_cl_hig_loc[i]) Vis = get_val(l_vis[i], 10000) # Step 1: Default matematico LOCALE types = {'L': loc_L, 'M': loc_M, 'H': loc_H} dominant_type = max(types, key=types.get) # Quantità da mostrare: Media Globale Cl = c_avg_tot # Step 2: Override Tattico LOCALE # Se LOCALMENTE le basse sono > 40%, vincono loro. # (Soglia abbassata a 40 per catturare il 51%) if loc_L > 40: dominant_type = 'L' # Se localmente è nuvoloso basso, forziamo la copertura visiva alta # anche se la media globale è più bassa if Cl < loc_L: Cl = int(loc_L) # Step 3: Nebbia (F) is_fog = False if Vis < 2000 or Code in [45, 48]: is_fog = True elif Rh >= 96 and loc_L > 40: is_fog = True if is_fog: dominant_type = 'F' if Cl < 100: Cl = 100 # Check varianza spaziale min_p = min(points_cl_tot[i]) max_p = max(points_cl_tot[i]) var_symbol = "" if (max_p - min_p) > 20: var_symbol = "~" cl_str = f"{var_symbol}{Cl}{dominant_type}" UV = get_val(l_uv[i], 0) uv_suffix = "" if UV >= 10: uv_suffix = "E" elif UV >= 7: uv_suffix = "H" Wspd = get_val(l_wspd[i], 0) Gust = get_val(l_gust[i], 0) Wdir = int(get_val(l_wdir[i], 0)) Cape = get_val(l_cape[i], 0) IsDay = int(l_day[i]) if l_day[i] is not None else 1 card = degrees_to_cardinal(Wdir) w_val = Gust if (Gust - Wspd) > 15 else Wspd w_txt = f"{card} {int(round(w_val))}" if (Gust - Wspd) > 15: g_txt = f"G{int(round(w_val))}" if len(card)+len(g_txt) <= 5: w_txt = f"{card}{g_txt}" elif len(card)+1+len(g_txt) <= 5: w_txt = f"{card} {g_txt}" else: w_txt = g_txt w_fmt = f"{w_txt:<5}" sky, sgx = get_icon_set(Pr, Sn, Code, IsDay, Cl, Vis, T, get_val(l_rain[i], 0), Gust, Cape, dominant_type) sky_fmt = f"{sky}{uv_suffix}" lines.append(f"{dt.strftime('%H'):<2} {t_s:>4} {Rh:>3} {p_s:>3} {w_fmt} {cl_str:>5} {sky_fmt:<2} {sgx:<2}") count += 1 except Exception as e: logger.error(f"Errore riga meteo {i}: {e}") continue if count > 0: day_label = f"{['Lun','Mar','Mer','Gio','Ven','Sab','Dom'][now.weekday()]} {now.day}" blocks.append(f"*{day_label} ({label})*\n```text\n" + "\n".join(lines) + "\n```") now = end_time return f"🌤️ *METEO REPORT*\n📍 {location_name}\n🧠 Fonte: {model_name}\n\n" + "\n\n".join(blocks) if __name__ == "__main__": args_parser = argparse.ArgumentParser() args_parser.add_argument("--query", help="Nome città") args_parser.add_argument("--home", action="store_true", help="Usa coordinate casa") args_parser.add_argument("--debug", action="store_true", help="Mostra i valori dei 5 punti") args = args_parser.parse_args() if args.home: print(generate_weather_report(HOME_LAT, HOME_LON, HOME_NAME, args.debug, "SM")) elif args.query: coords = get_coordinates(args.query) if coords: lat, lon, name, cc = coords print(generate_weather_report(lat, lon, name, args.debug, cc)) else: print(f"❌ Città '{args.query}' non trovata.") else: print("Uso: meteo.py --query 'Nome Città' oppure --home [--debug]")